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Abstract
Structural data and U/Pb geochronology on zircon from central Fiordland, New Zealand show the role of pre-existing structural heteroge-
neities in the kinematic evolution of a newly discovered zone of transpression. The Straight River shear zone consists of steep zones of high
strain that are superimposed onto older fabrics across a 10� 80 km region. The older foliation formed during two periods of tectonism: con-
traction and magmatism of mostly Carboniferous (w312e306 Ma) age and Early Cretaceous batholith emplacement ending by 113.4� 1.7 Ma
followed by extension that ceased by 88.4� 1.2 Ma. The primary mechanism for the formation of steep shear zone foliations was the folding of
these older fabrics. Conjugate crenulation cleavages associated with the folding record shortening at high angles to the shear zone boundaries.
Fold axial surfaces and axial planar cleavages strike parallel to the shear zone with increasing strain as they progressively steepened to subvert-
ical. In most areas, shear sense flips from oblique-sinistral (east-side-down component) to oblique-dextral (west-side-down) across zones of
intermediate and high strain. High strain zones display subvertical mineral lineations, steep strike-slip faults and shear sense indicators that
record strike-slip motion across the steep lineations. These patterns reflect triclinic transpression characterized by narrow zones of mostly
strike-slip deformation and wide zones of mostly contraction. Zones of high strain align with offshore traces of late Tertiary strike-slip faults,
suggesting that a previously undocumented component of late Tertiary shortening and strike-slip motion is accommodated within Fiordland.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Transpression refers to deformation that accommodates
simultaneous flattening and shearing and is commonly ob-
served at oblique plate margins (Harland, 1971). One of the
first three-dimensional kinematic models for transpression
was introduced by Sanderson and Marchini (1984), and
many subsequent studies have modified this model and its
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boundary conditions to explore the complex three-dimensional
strain patterns that are possible with transpression (e.g. Fossen
and Tikoff, 1993; Jones et al., 1997, 2004; Robin and Cruden,
1994; Jiang et al., 2001). These and most other mathematical
models generally assume homogeneous deformation within
the block being deformed. However, zones of continental
deformation typically are characterized by heterogeneous
strain patterns, including displacements that are distributed
non-uniformly across large areas. Kinematic partitioning,
where components of strike-slip and dip-slip motion occur
in different places and on separate structures, is especially
common in zones of oblique convergence and has been
documented in many orogens and continental transforms
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(e.g. Mount and Suppe, 1987; McCaffrey, 1992; Goodwin and
Williams, 1996; Butler et al., 1998; Norris and Cooper, 2001;
Bhattacharyya and Hudleston, 2001; Claypool et al., 2002;
Fuis et al., 2003; Holdsworth et al., 2002; Czeck and Hudleston,
2003; Barnes et al., 2005; Sutherland et al., 2006). Previous
work has shown that the controls on kinematic partitioning,
and the evolution of obliquely convergent zones in general,
can include far-field plate boundary conditions (e.g. Teyssier
et al., 1995; Jiang et al., 2001; Tikoff et al., 2002), rheological
contrasts in the crust (e.g. Coke et al., 2003; Marcotte et al.,
2005), and the presence of mechanical heterogeneities such
as old faults and shear zones (e.g. Mount and Suppe, 1987;
Vauchez et al., 1998; Tavarnelli et al., 2004). Determining
which of these factors exerts the dominant control on zones
of oblique convergence, and at which scale, is important
for understanding how orogenic belts develop in different
settings.

Variations in the style or degree of strike-slip partitioning
commonly occur along the strike of major fault zones such
as the Alpine fault, which has accommodated at least
460 km of dextral movement since 20e25 Ma (Wellman,
1953; Sutherland, 1999). Oblique-slip on the central section
of the Alpine fault (Fig. 1a) provides an example of a system
characterized by a low degree of strike-slip partitioning
(Norris et al., 1990; Berryman et al., 1992; Teyssier et al.,
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1995; Little, 1996; Norris and Cooper, 1995, 2001). Along
this segment, the Alpine fault strikes to the northeast (55�),
dips moderately to the southeast and displays a slip direction
that plunges w22�. The remaining motion is distributed on
thrust and oblique-slip faults in a >100 km-wide zone located
mostly east of the Alpine fault. In contrast, the Fiordland
(southernmost) segment of the Alpine fault is nearly vertical
and accommodates almost pure strike-slip motion (Barnes
et al., 2001, 2005). Folds and reverse faults west and east of
the Alpine fault accommodate contraction, indicating that
this part of the Alpine fault system is strike-slip partitioned
(Norris et al., 1990; Markley and Norris, 1999; Claypool
et al., 2002; Barnes et al., 2001, 2005). However, the amount
of shortening accommodated by these structures has been
difficult to quantify (Norris and Cooper, 2001).

In this paper, we examine how lithologic heterogeneity and
pre-existing mechanical anisotropies controlled the initiation
and evolution of a large transpressional shear zone of apparent
late Tertiary age in Fiordland, New Zealand. The Straight
River shear zone (Fig. 1), which is located southeast of the
southernmost segment of the Alpine fault, was first identified
by Oliver and Coggon (1979) as the Straight River [thrust]
fault and is interpreted here as a transpressional structure on
the basis of new data. This reinterpretation shows the existence
of a previously undocumented component of contraction
e
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accommodated in Fiordland in the early stages of the forma-
tion of the Alpine fault. An especially interesting aspect of
our study is the analysis of outcrops that record the progressive
development of a heterogeneous array of structures that record
different combinations of contraction and strike-slip deforma-
tion. In particular, a progressive tightening of asymmetric
folds and the rotation of fold axial planes during shortening
at high angles to the shear zone boundaries controlled the
development of steep foliation planes, down-dip and oblique
mineral lineations, and other structures commonly viewed as
diagnostic of transpression. This field-based model illustrates
a mechanism for the formation of vertical structures in rocks
with a pre-existing foliation. Our results provide information
on the types and scales of anisotropies that influence the
formation and evolution of ductile structures in a newly dis-
covered zone of transpression that affects at least 800 km2 of
crust. This style of transpressional deformation is character-
ized by smaller-scale partitioning of deformation than the
documented partitioning between the Alpine fault system
and offshore fold-thrust belts.

2. Regional tectonic history of Fiordland

Central Fiordland (Fig. 1) records a history of orogenesis
that occurred between w481 and w334 Ma (Oliver, 1980;
Gibson et al., 1988; Ireland and Gibson, 1998). Crustal thick-
ening is indicated by kyanite-bearing assemblages (recording
pressures of 7e9 kb) that overprint higher-temperature and
lower pressure (P¼ 3e5 kb) sillimanite-bearing assemblages
in Paleozoic gneiss (Gibson, 1990). The relatively high-T,
low-P event occurred at w360 Ma (Ireland and Gibson,
1998; Gibson and Ireland, 1999), the high-P phase of metamor-
phism (7e9 kb) occurred at w330 Ma (Ireland and Gibson,
1998).

Superimposed on these Paleozoic metamorphic rocks is
a record of Early Cretaceous arc magmatism, upper amphibo-
lite to granulite facies metamorphism, and contraction (Oliver,
1977; Bradshaw, 1989; Gibson and Ireland, 1995; Mortimer
et al., 1999; Daczko et al., 2001; Klepeis et al., 2004). A major
batholith was emplaced into the middle and the lower crust
from w126 to w113 Ma and subsequently deformed to
form the Western Fiordland Orthogneiss (Mattinson et al.,
1986; McCulloch et al., 1987; Gibson et al., 1988; Gibson
and Ireland, 1995; Tulloch and Kimbrough, 2003; Hollis
et al., 2004). Similar intrusions comprise the protolith of the
Breaksea Gneiss (Fig. 1). Mineral assemblages indicate that
metamorphism at pressures of at least 12e14 kb occurred in
both batholiths (Oliver, 1977; Bradshaw, 1989; Clarke et al.,
2000; Daczko et al., 2001).

By w114 Ma western New Zealand was dominated by
extension and crustal thinning (Tulloch and Kimbrough,
1989; Spell et al., 2000). The extensional Doubtful Sound
and Resolution Island shear zones formed after w111 Ma (Ol-
iver and Coggon, 1979; Oliver, 1980; Gibson and Ireland,
1995; Ireland and Gibson, 1998; Klepeis et al., 2007).

Exhumation of rocks representative of Early Cretaceous
middle and lower crust occurred mostly during the Mid-Late
Cretaceous as a result of extension (Flowers et al., 2005;
Klepeis et al., 2007). Metamorphic core complexes formed
during this period (Tulloch and Kimbrough, 1989; Allibone
and Tulloch, 1997; Spell et al., 2000; Turnbull and Allibone,
2003; Kula et al., 2005; Klepeis et al., 2007). The extension
culminated in the rifting of New Zealand from Australia and
Antarctica and the initiation of seafloor spreading in the Tas-
man Sea by w84 Ma (Gaina et al., 1998; Kula et al., 2005).
Exhumation following Late Cretaceous extension was slow
until the onset of late Cenozoic transpression (House et al.,
2002). In northern Fiordland, this exhumation history is re-
corded by superposed structures in the Anita shear zone
(Fig. 1; Hill, 1995; Klepeis et al., 1999).

By w52 Ma, sea floor spreading in the Tasman Sea had
ended (Gaina et al., 1998). The PacificeAustralia plate bound-
ary developed as a spreading center south of New Zealand by
47e45 Ma (Sutherland et al., 2000). From 30 to 11 Ma,
spreading became progressively more oblique and the bound-
ary evolved into a transform (Lamarche et al., 1997). Subduc-
tion beneath Fiordland and formation of the Alpine fault began
as early as 25e20 Ma (Lebrun et al., 2003; Lamarche and
Lebrun, 2000).

3. Structural and kinematic analysis

In this section we describe structures from the Doubtful
Sound region (Fig. 1) where we studied the SRSZ and older
structures in detail. We compare these elements to those ex-
posed at Breaksea Entrance to evaluate their along-strike
variability. The analysis of Paleozoic and Mesozoic structures
allows us to determine how older structures influenced the
evolution of subsequent phases of deformation. The Doubtful
Sound region is characterized by three structural domains
(Fig. 2). Domain I preserves structures associated with Paleo-
zoic deformation, granitic magmatism, and metamorphism.
Domain II preserves structures and metamorphic mineral
assemblages associated with Early Cretaceous magmatism
and mid-Cretaceous extension. Domain III preserves struc-
tures associated with the formation of the younger SRSZ.
3.1. Paleozoic rock units and structures (domain I)
Domain I (Fig. 2a) contains schist, paragneiss, and orthog-
neiss of the Deep Cove Gneiss. At the west end of Doubtful
Sound, and on Secretary Island (Fig. 3), the thickest unit is
a micaceous meta-arenite. Garnet amphibolite, calc-silicate,
and marble layers are also present. In most areas of domain
I, bedding (S0) is overprinted by deformation and upper am-
phibolite facies metamorphism. However, near the southeast
headland of Secretary Island we observed relict cross-bedding
(Fig. 4a) and graded beds in tightly folded (F1) meta-arenite
layers (Fig. 4b). The folds are overturned and recumbent,
and display an axial planar foliation (S1) defined by biotite
in schist and hornblendeþ plagioclase aggregates in garnet
amphibolite units. Aligned biotite and hornblende define min-
eral elongation lineations (L1) in these units, respectively
(Fig. 4b, inset).
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At least two generations of granitic dikes intrude the Deep
Cove gneiss. The first cuts the L1eS1 fabric and is folded into
tight inclined-recumbent folds (F2) (Fig. 4c). The folds display
an axial planar foliation (S2). The second generation of dikes
cuts the first and forms thick (several meters), weakly de-
formed tabular bodies (Fig. 4d). One of the largest of these lat-
ter bodies is the Deas Cove Granite (Fig. 3), which yielded an
Rb/Sr whole-rock age of 372� 12 Ma (Oliver, 1980). These
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observations show that the regional fabric in domain I formed
as mid-Paleozoic granitoids intruded a thick sequence of vol-
canic and sedimentary rocks.
3.2. Mesozoic intrusive rock and extensional structures
(domain II)
The Western Fiordland Orthogneiss contains several distinc-
tive mineral assemblages, including garnet- and clinopyroxene-
bearing veins that record garnet granulite facies metamorphism
at depths >45 km (Oliver, 1977, 1980; Gibson and Ireland,
1995; Hollis et al., 2004). These garnet granulite assemblages
are recrystallized within the retrogressive, upper amphibolite
facies Doubtful Sound shear zone (Figs. 3 and 5e, f). Klepeis
et al. (2007) showed that these superposed assemblages record
a progressive change in temperature, pressure, and fluid condi-
tions in the lower crust and create a regional gneissic layering
that characterizes domain II (Figs. 2 and 5feh).



Fig. 4. Structures exposed along Thompson Sound that predate the SRSZ. (a) Overturned cross-bedding (S0) in meta-arenite. (b) Folded (F1) meta-arenite layer

in garnet (gt)þ clinozoisite (cz) schist with an axial planar cleavage (S1). Inset shows L1 mineral lineations and the average S1 cleavage orientation plotted on

an equal area lower hemisphere projection. (c) First generation of granitic dikes are folded into tight F2 folds. (d) Second generation of dikes are weakly deformed

and of mostly Carboniferous age (Fig. 11g).
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The Doubtful Sound shear zone is composed of folded, at-
tenuated and locally mylonitic layers of marble, calc-silicate
gneiss and orthogneiss. The orientation of high strain zones
is variable. Along Doubtful Sound they dip 20e30� to the
eastenortheast (Fig. 5b, f, h). Top-down-to-the-northeast and
-southwest sense-of-shear indicators are consistent with inter-
pretations of the shear zone as a ductile normal fault (Gibson
et al., 1988; Oliver, 1990; Klepeis et al., 2007).

On Resolution Island, (within the southernmost study site,
Fig. 6) the Cretaceous Breaksea Gneiss is composed primarily
of granulite and, locally, eclogite facies metagabbro and meta-
diorite that is similar to, but more mafic than, the metagabbro
of the Western Fiordland Orthogneiss. Unretrogressed parts of
this unit have yielded peak metamorphic pressures ranging
from 11 kbar to at least 15e16 kbar (Allibone et al., 2005;
Milan et al., 2005; M. De Paoli, personal communication,
2007), the highest pressures recorded in Fiordland. Like the
Doubtful Sound shear zone, the Resolution Island shear zone
(Fig. 6) is defined by heterogeneous upper amphibolite facies
high strain zones that form a regional flat to moderately dip-
ping foliation (Klepeis et al., 2007).
3.3. The Straight River shear zone (domain III)
The Straight River shear zone (SRSZ) is a new name given
to an array of steep high strain zones between Thompson
Sound and Resolution Island (Figs. 3 and 7a). Oliver (1980)
suggested that the part of this structure south of Doubtful
Sound (the Straight River fault) was a major thrust fault that
parallels the Doubtful Sound shear zone. We present new
data that show the regional extent of the shear zone, its kine-
matic evolution, and its crosscutting relationship with the
Doubtful Sound shear zone (Fig. 5). We completed four
detailed transects across the shear zone and developed criteria
for defining low, medium and high strain zones that qualita-
tively define the gradational boundaries of the SRSZ (Figs. 7
and 9).

3.3.1. Thompson Sound transect
Along Thompson Sound, the SRSZ lies entirely within Pa-

leozoic meta-arenite that is intruded by minor granitoids
(Fig. 7b). This transect is important because the relative uni-
formity of the meta-arenite lithology (Fig. 7b) allowed us to
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rule out the effects of different lithologies as a cause of struc-
tural variability. At northern and southern boundaries of the
shear zone (Fig. 3), pre-existing S1 foliation is cut by a steep
shear zone foliation that dips steeply away from the center of
the shear zone (SSR). The outer w1 km of domain III at
Thompson Sound (Fig. 2a) is characterized by zones up to sev-
eral meters wide composed of steep shear zone foliation
planes. Pre-existing S1 foliation planes are deflected, folded
and transposed into the SSR shear zone foliation in these zones.
Between these discrete zones the fabric is dominated by more
gently dipping pre-existing S1 foliation planes. This pattern of
deformation allowed us to determine the orientation of the
boundaries of high strain zones.

In the center of domain III, all Paleozoic structures are
overprinted by SRSZ structures. Fig. 9a shows a monocline
exposed in a low strain zone northwest of the center high strain
zone along Thompson Sound. Compositional layering is
folded into monoclines and small-scale asymmetric folds
that display northwest dipping axial planes. The opposite
asymmetry (i.e. southeast-dipping axial planes of monoclines)
occurs on the southeast side of the SRSZ on Bauza Island
(Fig. 7c). The orientations of folded pre-existing S1 foliation
planes (Fig. 9b) from within a w50 m section of folds display
a southwest-plunging calculated fold axis that coincides with
measured fold hinges. The axial planes dip to the northwest.
We interpret these monoclines to characterize a low strain
zone that records an early stage in the evolution of shear
zone folds.

Crenulation cleavage occurs throughout the transect (Figs.
8c and 9c). The cleavage is best developed in the micaceous
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meta-arenite layers where dominant crenulation cleavage
planes (Scr1) strike w110� and dip w65� to the southwest.
The subordinate crenulation cleavage planes (Scr2) strike
w48� and dip w80� to the northwest (Fig. 8e). The two
sets always occur together and form angles of 112� and 68�

with one another. These zones, with two well-developed sets
of crenulation cleavage and relatively tight, inclined folds, de-
fine our intermediate strain zones (Fig. 9c, f).

Within high strain zones at the center of the zone of defor-
mation, Scr2 is more pronounced than it is elsewhere and Scr1 is
less defined if present at all. The center of the SRSZ is defined
by zones where pre-existing foliation is completely transposed
into a steep shear zone foliation that is parallel to the Scr2

plane. Shear zone fold hinges are nearly vertical and folds
are significantly tighter than the intermediate strain zones on
either side of the high strain zone. Between these high strain
zones of steeply dipping shear zone foliation and isoclinal
folds are intermediate strain zones where both crenulation
cleavage planes are visible. In the transition zones near shear
zone boundaries, both crenulation cleavage orientations coex-
ist and pre-existing S1 is folded into recumbent and monocli-
nal shear zone folds with axial planes that dip away from the
center of the zone of deformation.

3.3.2. Cascada Bay transect
Located 2 km inland from the Tasman Sea (Fig. 3), Cascada

Bay (Fig. 3) displays evidence for the localization of strain
within a marble-rich sequence and a strain gradient defined
by variations in fold tightness and a decrease in the degree
of transposition toward the center of the shear zone. East of
the bay, the Doubtful Sound shear zone foliation (SDS) within
the Western Fiordland Orthogneiss is folded into broad, open
SRSZ folds (FSR) (Fig. 7d). Close to the contact between the
orthogneiss and the marble-rich sequence (Fig. 7d), folds are
tight and the steep shear zones are common, defining a qualita-
tive increase in strain to the west toward Cascada Bay at high
angles to the SRSZ boundaries. Structures exposed at Cascada
Bay indicate that strain is focused into a w250 m-wide zone
within the marble-rich sequence. In low and intermediate
strain zones, SRSZ fold axial planes dip to the SW and NE
in recumbent and inclined monoclinal folds (Fig. 9d). In zones
that record higher strain closer to the center of the shear zone,
SRSZ fold axial planes are nearly vertical and are subparallel
to the SRSZ foliation (Fig. 7d). Fold hinges plunge w80� to
the northenorthwest. The contact between the marble-rich se-
quence and the calc-silicate gneiss to the west is sheared and
displays the subvertical SRSZ foliation. Farther west, the
pre-existing S1 foliation is folded into SRSZ folds and locally
transposed into the shear zone foliation. These folds gradually
open up to the west defining a gradational boundary between
domains III and I (Fig. 2a).

3.3.3. Straight River shear zone structures in the Western
Fiordland Orthogneiss

Structures associated with the SRSZ in the Western Fiord-
land Orthogneiss occur up to w6 km east of the high strain
zone at Cascada Bay (Fig. 10). The Doubtful Sound shear
zone foliation (SDS) is folded and transposed into the steep
SRSZ foliation (SSR) in 10 m-wide high strain zones (e.g.
Fig. 9e) that are spaced a few hundred meters to several
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Fig. 8. Evolution of SRSZ structures in thin section. (a) Meta-arenite outside the shear zone at Thompson Sound. (b) C0eS fabric within high strain zone showing

an oblique-dextral component of motion. Thin section surface parallels lineation and is perpendicular to foliation. (c) Conjugate crenulation cleavages (Scr1, Scr2) in

a low-intermediate strain zone, indicating a component of shortening across the shear zone. This section was cut perpendicular to the Scr2 foliation marked in the

figure (orientation: 065 80 SE). (d) Conjugate semi-brittle faults indicating a component of shortening across the shear zone at Resolution Island. This section was

cut perpendicular to the shear zone foliation marked in the figure (orientation: 047 85 NW). Lower hemisphere, equal area projection showing the two orientations

of conjugate crenulation cleavages (e), conjugate faults (f) and mineral lineations, including quartz slickenfibers (f). (g) Block diagram summarizing the relation-

ship among faults.
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Fig. 9. Structures observed along two NWeSE transects of the SRSZ at Thompson and Doubtful sounds. (a) Photograph of an asymmetric monocline (FSR) in zone

of low strain at edge of the shear zone at Thompson Sound. (b) Lower hemisphere, equal area projection showing measurements of FSR axial planes and S1, and L1

structures associated with the monocline in (a). (c) Photograph of asymmetric, inclined FSR fold and crenulation cleavage in zone of low-intermediate strain. (d)

Photograph of inclined asymmetric folds (FSR) in marble sequence in zone if intermediate strain at Cascada Bay (location in Fig. 3). Inset sketch shows SE-dipping

axial plane. (e) Sketch showing vertical profile of oblique-dextral, east-side-down transpressional shear zone. Shear zone deforms older foliation of the Doubtful

Sound shear zone (SDS). (f) Summary sketches taken from the profiles shown in Fig. 7 illustrating the criteria that define zones of relative low, intermediate, and

high strain that define the SRSZ. (g) Plot showing changes in the strike (black diamonds) and dip (squares) of shear zone cleavage with increasing strain. Note 20e
35� change in cleavage dip between low and high strain domains. In contrast the average strike of cleavage in these same areas remains approximately parallel to

the shear zone boundaries, with a few exceptions. (h) Plot showing changes in the pitch of mineral lineations (diamonds) and fold axes (squares) with increasing

strain. Data are from NE-striking shear zones exposed along Thompson and Doubtful sounds. See text for discussion.
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kilometers apart. Between these shear zones, the dominant
fabric elements are a gently northeast-dipping Doubtful Sound
shear zone foliation and a northeast-plunging Doubtful Sound
shear zone hornblende lineation. This crosscutting relationship
is evidence that the SRSZ is younger and unrelated to the de-
formation that produced the Doubtful Sound shear zone. The
presence of these structures also shows that, whereas we ob-
serve SRSZ structures across a wide zone, the deformation
is expressed differently in the various lithologies. The more
competent dioritic orthogneiss accommodates strain in rela-
tively narrow, widely separated shear zones across several ki-
lometers (Fig. 10), whereas strain is highly localized into
a w250 m-wide zone within the less competent marble se-
quence at Cascada Bay.

3.3.4. Bauza Island transect
Bauza Island, located w2 km northeast of Cascada Bay

(Fig. 3) displays features that are similar to those at Cascada
Bay. Deformation is localized within a w500 m-thick layer
of highly strained and brecciated marble that lies between
the Western Fiordland Orthogneiss with Doubtful Sound shear
zone foliation and Paleozoic gneiss with pre-existing S1 folia-
tion (Fig. 7c). The Doubtful Sound shear zone foliation within
the orthogneiss varies from dipping shallowly to the northeast
to shallowly to the northwest defining broad, open SRSZ folds.
We interpret this as a low strain zone showing evidence for the
early stages of the SRSZ overprinting the Doubtful Sound
shear zone.

As at Cascada Bay, structures related to the SRSZ (FSR,
SSR, LSR) are best developed within the marble layer. The
pre-existing S1 foliation in the marble-rich sequence is folded
into SRSZ folds. To the east of the area shown in the profile
are a series of SRSZ monoclines and recumbent folds with
eastesoutheast-dipping axial planes (e.g. Fig. 7c). High strain
zones of SRSZ shear zone foliation overprint the folds. The
contact between the marble sequence and the calc-silicate
gneiss to the west is highly sheared. Angular fragments of
the competent gneiss are suspended within a highly sheared
marble matrix.

Farther west, the SRSZ folds in the calc-silicate gneiss
gradually becomes open and axial planes dip moderately to
the northwest. Measurements of the S1 foliation around a large
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recumbent synform w500 m west of the marble sequence de-
fine an axis that plunges shallowly to the northeast with an in-
terlimb angle of w38�. The transition from upright, isoclinal
folding near the contact (Fig. 7c) to more open folds with axial
planes that dip to the NW qualitatively suggest a gradual de-
crease in strain away from the marble sequence where most
of the strain is localized.

3.3.5. Resolution Island transect
On Resolution Island and the north shore of Breaksea En-

trance (Fig. 6), the high strain parts of the SRSZ are defined
by steep semi-brittle fault zones and a steeply dipping, locally
mylonitic greenschist facies foliation that has overprinted all
older foliations, including the low-angle extensional Resolu-
tion Island shear zone. Quartz forms dynamically recrystal-
lized ribbons and plagioclase displays brittle microfaults and
asymmetric pressure shadows of recrystallized quartz and bi-
otite (Fig. 8d). Whereas the dominant foliation is consistently
steep within the high strain zones of the SRSZ, biotite and
quartz stretching lineations are variably oriented, in part due
to the complexity of fault orientations. Nevertheless, two dis-
tinctive groups of orientations are recognizable. Quartze
biotite mineral stretching lineations plunge variably to the
southwest, west and the northeast. Within mylonite zones of
the SRSZ on Resolution Island, hornblende and plagioclase
mineral stretching lineations plunge steeply to the northeast
and southwest suggesting that, locally, the SRSZ may record
amphibolite facies conditions. These two groups of lineations
that record different metamorphic grades are indicative of sig-
nificant exhumation during deformation.

Like the other transects, the geometry of the greenschist fa-
cies SRSZ foliation is variable across the shear zone (Fig. 7e).
On Resolution Island (Fig. 6), the SRSZ separates the Paleo-
zoic host rock to the west from the Western Fiordland Orthog-
neiss to the east. Along w1 km of shoreline the orthogneiss is
interlayered with the metasedimentary host rock of probable
Paleozoic age. High strain zones are localized within marble
and biotite-rich metasedimentary layers. Within these zones,
the foliation dips more steeply to the west than outside these
zones. To the west of the center of the shear zone the SRSZ
foliation dips gently to the west. To the east, a gneissic folia-
tion within the orthogneiss dips variably to the east, northeast
and northwest (Fig. 6) and is folded and transposed into the
shear zone foliation close to the center of the SRSZ.

Crosscutting the mylonitic zone are networks of brittle and
semi-brittle faults that form several distinctive sets. Two of
the most prominent sets form near vertical conjugate pairs
of minor sinistral and dextral strike-slip faults that strike at
high angles to the dominant mylonitic fabric (R1, R2, respec-
tively; Fig. 8d, f, g). Another set of minor thrust faults dips
gently to the east and west. Both the conjugate faults and
the gently dipping thrusts record contraction at high angles
to the shear zone boundaries (Fig. 8f, g). Within and near
steep high strain zones, two sets of crenulation cleavage and
semi-brittle shear bands overprint the foliation. Here, greens-
chist facies fault zones deform mylonitic foliation planes into
asymmetric lozenges. A well-developed steeply dipping to
subvertical set of crenulation cleavage and semi-brittle fault
zones also overprints older foliation planes. Adjacent to the
fault zones, hornblende-bearing fabrics are retrogressed to
chlorite-, epidote- and biotite-bearing assemblages. In these
fault zones, biotite and quartz mineral lineations plunge
gently to the northeast on shear band foliation planes. Boudin-
aged amphibolite layers and pegmatites indicate that these
directions are true stretching directions.

3.3.6. Kinematics
Changes in the geometry of structures across strain do-

mains (defined in Section 3.3 and Figs. 7 and 9) allowed us
to interpret the kinematics of deformation within the SRSZ.
Low strain domains generally lack shear zone mineral linea-
tions (LSR) and display asymmetric monoclines. In areas of
mica schist, they also are characterized by two crenulation
cleavages (Scr1, Scr2). The geometry of these cleavages indi-
cates a component of shortening at high angles to the shear
zone boundaries (Fig. 8e). Experimental studies of crenulation
cleavage show that conjugate sets form with the axis of max-
imum principle compression (s1) bisecting a w110� angle be-
tween the two cleavage planes (Zheng et al., 2004 and
references therein). From this relationship, we infer that s1

was oriented northwestesoutheast at a high angle to the shear
zone boundaries at Thompson Sound (Fig. 8e). In support of
this interpretation, the orientation of the conjugate dextral
and sinistral faults, as well as thrust faults on Resolution Is-
land, also indicate compression at high angles to the shear
zone boundaries (Fig. 8eeg).

In general, sense-of-shear indicators are poorly preserved in
low and intermediate strain domains. Where present, they sug-
gest complex three-dimensional displacements. In low strain
areas, asymmetric crenulation cleavages and biotite fish
show maximum asymmetry on surfaces viewed perpendicular
to foliation and perpendicular to fold axes and crenulation lin-
eations. The asymmetries indicate that opposite senses of
shear occur across fold axes: a top-down-to-the-southeast
sense-of-shear occurs on the east side of antiforms and
a top-down-to-the-northwest sense-of-shear on the west side
of antiforms. This pattern, and evidence of thickening in the
hinges of folds, suggests that flexural flow during NWeSE
shortening resulted in folds that evolved into steep high strain
zones.

Variations in cleavage orientation and fold geometries pro-
vide additional information on the importance of shortening.
As finite strain increases across domains, fold axial surfaces
(FSR) and the dominant crenulation cleavage (Scr2) rotate
from moderately dipping (�60�) to subvertical (80e90�)
(Fig. 9g). In contrast, the strikes of these structures maintain
an approximately constant orientation that parallels the steep
boundaries of the shear zone. These patterns suggest that
shortening was the dominant control on the evolution of
shear zone folds and foliations in most places. Nevertheless,
in a few intermediate strain zones, fold axes and cleavage
strikes are oriented 20e30� from the strike of the shear
zone (Fig. 9g), suggesting that the contribution of strike-
slip motion also is discernable.
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In intermediate strain zones where quartzebiotite mineral
lineations are present, shear bands (C0) record the greatest
asymmetry on surfaces that parallel the lineation and are per-
pendicular to foliation. The gentle-moderate plunge (20e30�)
of these mineral lineations (LSR, Fig. 9h) and the kinematic in-
dicators show that both reverse and strike-slip components oc-
curred in these domains. For example Fig. 8d shows a C0eS
fabric in a meta-arenite from Thompson Sound that records
a top-down-to-the-northwest, oblique-dextral sense-of-shear
parallel to the mineral lineation. Similar displacements occur
at Cascada Bay (Fig. 3). West of this bay, shear senses flip
back and forth along the south shore of Doubtful Sound in
a manner that is similar to that which occurs on the opposite
sides of fold axes in low strain zones at Thompson Sound
(Fig. 10b). West of First Arm, shear sense indicators show ob-
lique-dextral shear with a component of west-side-down nor-
mal motion (Fig. 10b). East of First Arm, they show
oblique-sinistral shear with a component of east-side-down
normal motion. These alternating oblique shear senses are
consistent with a style of non-coaxial contraction involving
NWeSE shortening and a subordinate component of strike-
slip deformation. Similar patterns of oblique-slip associated
with flexural slip folds have been described in other orogens
where they have been interpreted to be related to triclinic
transpression (Holdsworth et al., 2002).

Shear sense indicators and changes in the pitch of mineral
lineations and fold axes with increasing strain also show that
combinations of contraction and strike-slip deformation occur
in high strain domains (Fig. 9h). Fold axes display gentle and
moderate pitches on axial surfaces in areas of low strain. In in-
termediate strain domains, quartzebiotite mineral lineations
display moderate pitches on cleavage (SSR) planes
(Fig. 10a). The pitches of fold axes in these latter domains
are variable, reflecting the two sets of crenulation cleavage.
One set parallels the mineral lineations, the other is oblique
to this lineation. In high strain domains, mineral lineations dis-
play moderate (50e60�) to steep (80�) pitches, and fold axes
pitch steeply (70e85�). Kinematic indicators in these high
strain domains include C0eS fabric, biotite fish, asymmetric
deflections of foliation planes, and asymmetric tails on por-
phyroblasts. In many of these zones the greatest asymmetry
occurs on surfaces viewed parallel to the mineral lineation
and perpendicular to foliation. However, in some areas it oc-
curs on surfaces viewed oblique to the lineation, indicating
that some strike-slip motion occurs across steeply plunging
lineations (Fig. 10a). This latter pattern, and the increase in
lineation pitch with increasing strain, are expected in zones
of triclinic transpression (Robin and Cruden, 1994; Lin
et al., 1998) where rapid switches in the direction of finite ex-
tension are common (e.g. Tikoff and Greene, 1997; Holds-
worth et al., 2002; Marcotte et al., 2005).

On the basis of these observations, we conclude that the
SRSZ is a heterogeneous zone of dextral transpression that re-
cords contraction at high angles to the shear zone boundaries.
Strain is partitioned into a series of spaced, relatively narrow
high strain zones that accommodate mostly dextral strike-
slip motion with components of flattening and vertical
extension. Elsewhere, contraction dominates (non-coaxial
contraction, involving mostly shortening with a subordinate
component of strike-slip motion) and is accommodated over
a much broader region.

4. U/Pb geochronology

To constrain the numerical age of rock fabrics and struc-
tures we analyzed zircon with laser-ablation ICPMS. The col-
lector configuration allows simultaneous measurement of
204Pb in a secondary electron multiplier while 206Pb, 207Pb,
208Pb, 232Th, and 238U are measured with Faraday detectors.
The samples are from two pegmatite dikes that are deformed
by the SRSZ along the southern shore of Doubtful Sound
and one felsic dike within the host rock from the western shore
of Thompson Sound (sample locations in Fig. 3). All age un-
certainties are reported at the 2s level (analytical methods are
in the Supplementary material).

Sample 04-60 is from a pegmatite dike in a narrow zone
dominated by SSR. This site lies east of the main zone of con-
tinuous deformation associated with the SRSZ in domain III
(Fig. 3). The dike cuts the Doubtful Sound shear zone foliation
in the Western Fiordland Orthogneiss and displays a steeply
dipping SRSZ foliation. These crosscutting relationships indi-
cate that the dike was emplaced after the formation of the
Doubtful Sound shear zone foliation and prior to or during
the formation of the SRSZ foliation. Thirteen analyses were
obtained from zircon grains in sample 04-60. The grains
show no sign of inheritance and yielded an age of
88.4� 1.2 Ma (Fig. 11a, b). High U/Th ratios (Fig. 11c),
with most between 30 and 120, suggest metamorphic zircon
growth, although these ratios do not rule out igneous crystal-
lization at the same time (Rubatto et al., 2001; Williams,
2001).

Sample 04-53 is from a pegmatite dike west of the center of
the SRSZ along the boundary between domains I and III
(Fig. 3). This dike cuts the pre-existing S1 and S2 foliations
in locally migmatitic Paleozoic metasediment and is faulted.
Thirty-eight analyses were conducted on cores and tips of zir-
con grains. Tips and some young cores define a well-con-
strained igneous age of 113.4� 1.7 Ma (Fig. 11d, e). Most
cores show older inherited ages. Robust peaks defined by mul-
tiple analyses are shown on the age probability plot (Fig. 11g)
at 335 Ma, 555 Ma, and 767 Ma. Additional age peaks are
present, but defined by only one analysis. Most U/Th values
are typical of igneous zircon grown (U/Th< 10), but some
tips have extreme U/Th values (Fig. 11f), suggesting that
some metamorphic zircon growth accompanied or followed
the igneous crystallization of most of the zircon. We interpret
the igneous age to reflect zircon crystallization during partial
melting in the migmatite and/or contact metamorphism during
the intrusion of Early Cretaceous plutons associated with the
Western Fiordland Orthogneiss.

Sample 05-135 is from a felsic (quartzþ plagioclase) dike
within the metasedimentary host rock. The sample location is
within domain I near the boundary with domain II from the
western shore of Thompson Sound (Fig. 3). The dike cuts
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the dominant flat foliation (S1 and S2) but is also tightly folded
within the F2 folds that deform S1 and S2. From this field
relationship, we interpret the dike to have formed after the
S1 foliation and before F2 folds. Thirty-two analyses were con-
ducted on zircon grains, 27 from cores of grains and five from
tips or rims. The age distribution plot (Fig. 11i) shows that
there is significant spread in the ages. Cores of zircon grains
record age peaks of Proterozoic and Paleozoic age with the
strongest peak at w306 Ma. A group of 10 coherent analyses
define an approximate age of 312.45þ 17.95, �8.33 Ma
(Fig. 11h).

5. Discussion
5.1. Interpretation of U/Pb geochronology
The analyses of zircon from sample 05-135 (Fig. 11h, i)
show that the S1 and S2 foliations of domain I records several
tectono-thermal events. The zircon is complex due to the ef-
fects of both Pb loss and inheritance, and record a range of
Proterozoic and Paleozoic ages. The youngest recorded event
is Carboniferous with an average of 312.45þ 17.95/�8.33 Ma
and a peak at 306 Ma according to the zircon density distribu-
tion (Fig. 11i). These ages are slightly younger than those ob-
tained by Ireland and Gibson (1998) and Gibson and Ireland
(1999) who showed that high-P metamorphism occurred at
w330 Ma following a period (340e370 Ma) of arc magma-
tism. The lack of zircon overgrowth or the crystallization of
Mesozoic and younger zircon shows that this section of the
crust remained relatively cool and undisturbed by fluids since
w306 Ma. The results also show that the dominant foliation in
domain I records only minor effects of Cretaceous extension
and magmatism (cf. Klepeis et al., 2007).

The results of zircon analyses from sample 04-60
(Fig. 11aec) allow us to constrain the duration of extension
in Fiordland. The ages and crosscutting relationships of the
dike that yielded this sample indicate that extension ceased
by 88.4� 1.2 Ma. This age is younger than other published
zircon 206Pb/238U ages from the Western Fiordland Orthog-
neiss and represents the first determination of when extension
in Fiordland ended using U/Pb techniques. Ion probe analyses
of zircon from the Western Fiordland Orthogneiss by Gibson
et al. (1988) yielded 206Pb/238U ages of 119� 5 Ma (1s) in
an amphibolite facies mylonite, and 126� 3 Ma (1s) in a gran-
ulite facies orthogneiss. SHRIMP analysis of zircon by Hollis
et al. (2004) yielded 206Pb/238U ages of 115.6� 2.4 Ma (2s) in
a metadioritic sample of the orthogneiss, and 114� 2.2 Ma
(2s) in a sample of sheared garnet granulite in the orthogneiss.
U/Pb analyses of zircon from a syntectonic dike obtained by
Klepeis et al. (2007) indicated that deformation in the Doubtful
Sound shear zone began before and outlasted 102.1� 1.8 Ma.
Our result that extension ended by w88 Ma is compatible
with these published ages. It also indicates that the SRSZ
formed after 88.4� 1.2 Ma.

The results of zircon analyses from sample 04-53 allowed
us to evaluate the relative proximity of rocks located west of
the SRSZ to Early Cretaceous plutons. The 113.4� 1.7 Ma
igneous age from this sample (Fig. 11g) represents one of
the youngest ages associated with Early Cretaceous arc mag-
matism and contact metamorphism in Fiordland. Similar crys-
tallization ages from the Western Fiordland Orthogneiss in
the range 116e113 Ma have been obtained from elsewhere
the granulite belt (Gibson et al., 1988; Tulloch and
Kimbrough, 2003; Hollis et al., 2004). Hollis et al. (2004) ob-
tained SHRIMP analyses of zircon grains from calc-silicate
paragneiss above the orthogneiss at Crooked Arm, which
yielded a strong peak in 206Pb/238U ages at 117.7� 2.8 Ma
(2s) and lesser peaks at c. 600e500 Ma and 1100e900 Ma.
Zircon from Crooked Arm yielded a pronounced peak at
116� 2 Ma (2s) with Paleozoic inheritance, most notably
a peak at w480 Ma (Ireland and Gibson, 1998). These age re-
lationships and the occurrence of migmatite suggest that this
rock experienced igneous crystallization, contact metamor-
phism, and dike emplacement. These observations place it in
close proximity to either the Western Fiordland Orthogneiss
or the Breaksea Gneiss during the final stages of the emplace-
ment of their protoliths.

The results from samples 04-53 and 05-135 (Fig. 11bei) also
allow us to evaluate the possible terrane affiliations of rocks on
either side of the SRSZ. The broad similarity of the protolith li-
thology and the pattern of inherited zircon ages from these sam-
ples (especially the young Carboniferous ages) with other
published ages from metasedimentary rock at Doubtful Sound
(Ireland and Gibson, 1998; Gibson and Ireland, 1999) supports
the interpretation that the Paleozoic metasediments located
west and east of the SRSZ are part of the same, or similar,
Paleozoic terrane. Confirmation of this interpretation awaits
additional analyses on both sides of the shear zone.

The interpretations that sample 04-53 was in close prox-
imity to Early Cretaceous plutons and that Paleozoic host
rock on both sides of the SRSZ are similar implies that de-
formation in the SRSZ involved strike-slip displacements of
only a few kilometers. One hypothesis is that the migmatite
at site 04-53 originated from an area where the westernmost
strand of the SRSZ has cut across and displaced the contact
aureole of the Breaksea Gneiss a few kilometers south of
Dagg Sound (Fig. 7a). Alternatively, oblique top-down-to-
the-northwest displacement on the SRSZ at the Cascada
Bay could have dropped migmatitic host rock down from
above the Western Fiordland Orthogneiss along Doubtful
Sound. Both possibilities are consistent with our finding
that deformation in the SRSZ was dominated by contraction
at high angles to its boundaries and involved less than 20 km
of strike-slip displacement and only a few kilometers of ver-
tical motion. Nevertheless, the exact magnitude of displace-
ment along the SRSZ is unknown and awaits detailed
mapping and the dating of units between Breaksea and
Dagg sounds.
5.2. Interpretation of transpressional
shear zone evolution
Any kinematic model of the SRSZ must explain the follow-
ing observations: (1) contraction at high angles to the shear
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zone boundaries; (2) fold axial surfaces and cleavage planes
that strike parallel to the shear zone at all stages of develop-
ment, but progressively steepen to subvertical with increasing
strain (Fig. 9g, h); (3) The flipping of shear sense from obli-
que-sinistral (east-side-down component) to oblique-dextral
(west-side-down component) across zones of intermediate
and high strain (e.g. Fig. 10a, b); and (4) The occurrence of
high strain zones where mineral lineations and fold axes pitch
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Deformation is inferred to have begun with the formation
of asymmetric monoclines and open folds of pre-existing re-
gional foliations (S1/S2, SDS) (Fig. 12a). The axial planes of
the monoclines and crenulation cleavages (Scr1, Scr2) dip mod-
erately (60�) to the northwest and southeast (e.g. Figs. 7c and
9a). With continued shortening, the monoclines tightened into
asymmetric folds (FSR) and their axial planes rotated to sub-
vertical (Fig. 12b). Conjugate crenulation cleavages and minor
thrusts developed that record shortening at high angles to the
shear zone boundaries. Slip or ductile shear between rock
layers during folding resulted in shear senses that change
from oblique-west-side-down to oblique-east-side-down
across the hinges of the folds. This type of kinematic pattern
commonly results where folds form by flexural slip or flexural
flow between layers in a rock, and is well-documented in
zones where a pre-existing mechanical anisotropy controls
folding (Holdsworth et al., 2002; Coke et al., 2003).

Continued shortening resulted in the rotation of FSR fold
axial planes to near vertical as strain increased (Fig. 12c). A
penetrative axial planar foliation (SSR) developed from the
flattening and the intensification of the steeper of the two
crenulation cleavages. These zones of SSR foliations and
tight-isoclinal folds define steep zones of high strain. Pre-ex-
isting fabrics are transposed into the SRSZ foliation. High
strain zones accommodated both shortening and components
of strike-slip motion and near vertical extrusion. Conjugate
brittle faults (R1, R2) and minor thrusts formed and record
shortening and oblique-slip in narrow, branching fault zones.

This style of strain partitioning invites a comparison to
other zones of partitioned transpression. At Marble Cove in
Newfoundland, Goodwin and Williams (1996) reported
a broad domain in a transpressive shear zone where stretch-
ing lineations plunge steeply and accommodate mostly re-
verse motion with a component of dextral shear. Narrow
zones of high strain display shallowly plunging lineations
and accommodated mostly dextral shear with a component
of reverse motion. This style, where shortening is accommo-
dated over a broader region than the strike-slip component, is
similar to that which we observed in the SRSZ. However, the
geometry of lineations and distribution of sense-of-shear in-
dicators we observed are different than those in the Marble
Cove example. We observed the steepest lineations in narrow
zones of high strain. More shallowly plunging lineations oc-
cur heterogeneously in zones of intermediate strain. This pat-
tern may partly reflect the poor preservation of mineral
lineations outside of high strain domains. However, it also
appears to reflect a situation where strike-slip deformation
is partitioned into narrow zones in both intermediate and
high strain domains. A similar pattern, where areas domi-
nated by contraction develop punctuated strain heterogene-
ities that reflect some strike-slip motion, has been
described by van Noorden et al. (2007). These authors attri-
bute the pattern to the incipient stages of strain partitioning
where organized domains of contraction and strike-slip mo-
tion have not yet formed. Our observations, where this pat-
tern occurs in some intermediate strain areas, are consistent
with this interpretation.
In our model, vertical lineations reflect triclinic bulk strain
where components of shortening and vertical extension control
the orientation of structures at the margins of high strain do-
mains (e.g. Tikoff and Greene, 1997; Holdsworth et al.,
2002; Marcotte et al., 2005). In the centers of these domains
steep faults and narrow zones of ductile strain accommodate
the strike-slip component. Some strike-slip motion is evidence
by shear indicators that occur across the steep lineation away
from the faults. Similar high strain zones where triclinic trans-
pression is partitioned into zones of non-coaxial contraction
(contraction at high angles to the shear zone boundaries with
components of dip-slip simple shear and strike-slip simple
shear) have been described by Holdsworth et al. (2002). Our
observations are compatible with this study and suggest a het-
erogeneous partitioning of transpressional deformation into
broad zones of non-coaxial shortening (shortening plus subor-
dinate components of vertical extension and strike-slip mo-
tion) and narrow zones of strike-slip-dominated deformation.

The Fiordland example also illustrates how lithologic vari-
ability and competency contrasts influenced the evolution of
a zone of transpression. Fig. 7a shows that the SRSZ closely
follows the contacts between the Western Fiordland Orthog-
neiss/Breaksea Gneiss and Paleozoic host rock, where rheo-
logical contrasts are most pronounced. Within Paleozoic host
rock, where compositional layers of different competency
that define the inherited Paleozoic foliation are thin (<1 m),
the shear zone folds are short-wavelength and tight. In con-
trast, where metadioritic rocks of the Western Fiordland Or-
thogneiss and Doubtful Sound shear zone consist of thick
layers of gneiss and mylonite (>10 m), long-wavelength,
open folds accommodate layer-perpendicular shortening.
5.3. Regional significance of transpression
The small amount of isotopic data that constrain the abso-
lute age of transpression in Fiordland allow for only tentative
correlation with other structures. Our U/Pb zircon analyses in-
dicate that the SRSZ is younger than 88.4� 1.2 Ma. U/Pb
analyses of rutile from Crooked Arm (Fig. 3) have yielded
ages from 73.0� 0.5 Ma to 65.8� 0.5 Ma, suggesting that
temperatures in this section of the crust cooled to below
w400e450 �C by these times (Flowers et al., 2005). Since
mineral assemblages within the SRSZ record metamorphism
mostly at the greenschist facies and lower, these rutile ages
could represent a lower limit for the age of the SRSZ. How-
ever, transpression is inconsistent with the documented re-
gional tectonic setting at this time, which was dominated by
extension and the opening of the Tasman Sea (Gaina et al.,
1998; Kula et al., 2005).

The style of deformation in the SRSZ invites comparison
with both the Anita shear zone (Fig. 1) and to offshore strands
of the Alpine fault. In the latter, Klepeis et al. (1999) identified
a phase of contraction-dominated dextral transpression (their
D3 event) that is similar to what we have documented in
some parts of the SRSZ. Both shear zones show domains
that are dominated by folding, subhorizontal shortening, and
a subvertical foliation. However, although it postdates Late
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Cretaceous extension, the numerical age of the transpressional
fabric in the Anita shear zone also is unknown.

The SRSZ occurs inboard of and parallels active traces of the
AustralianePacific plate boundary located offshore (Frohlich
et al., 1997; Barnes et al., 2001, 2005; Cande and Stock,
2004). In central Fiordland, the Alpine fault is w10e30 km
from the shoreline and is composed of many branching fault
segments (Barnes et al., 2001, 2005). Several major strike-slip
faults of the Resolution Ridge segment occur along the strike
of the SRSZ to the south (Sutherland, 1999; Barnes et al.,
2001; Lebrun et al., 2003; Barnes and Nicol, 2004). This align-
ment and similarities between the SRSZ and transpressional
strands of the Alpine fault suggests that the former has played
a role in accommodating some of the obliquely convergent
motion between the Australian and Pacific Plates. This also
seems plausible given that the SRSZ displays faults that are ki-
nematically similar to late Tertiary faults exposed near Milford
Sound (Sutherland and Norris, 1995; Norris and Cooper, 2001;
Claypool et al., 2002). We therefore suggest that at least the
most recent phase of deformation in the SRSZ is related to
the late Tertiary dextral motion along the Alpine fault. If cor-
rect, our results suggest that a significant, albeit unquantified,
component of margin-perpendicular shortening is accommo-
dated inside Fiordland by networks of steep transpressional
zones. Regardless of whether this is correct, the SRSZ is the
largest transpressional shear zone yet discovered inside
Fiordland.

6. Conclusions

A 10 km-wide zone of transpression, the SRSZ, affects at
least 800 km2 of continental crust inboard of the southernmost
segment of the Alpine fault in Fiordland, New Zealand.
Regionally, the SRSZ traces the boundary between Early Cre-
taceous granulite facies orthogneiss and Paleozoic metasedi-
mentary rock. The SRSZ is composed of steep, narrow
zones of relatively high strain. The geometry of folds, conju-
gate faults, secondary thrusts, and conjugate crenulation cleav-
ages in the shear zone record contraction at high angles to its
boundaries. The dominant process by which the steep zones of
high strain formed involved the development of moderately
inclined, asymmetric folds that were progressively tightened
and rotated to vertical as strains accumulated. The folding of
pre-existing layering resulted in a kinematic pattern character-
ized by shear senses that alternate from oblique-sinistral (east-
side-down component) to oblique-dextral (west-side-down
component) across high strain zones. These steep zones ac-
commodated both dip-slip and strike-slip components of
motion at scales of 10e100 m. The shear zone records a style
of partitioned triclinic transpression where strike-slip motion
localized into relatively narrow zones while non-coaxial con-
traction (flattening plus a subordinate component of strike-
slip motion) was accommodated over a large region. It also
illustrates how pre-existing structural and lithologic heteroge-
neities are important factors in controlling the evolution of
subvertical structures commonly viewed as diagnostic of
transpression.
At its northern end, the SRSZ formed in Paleozoic rock
where a regional pre-existing fabric formed during a period
of contraction and magmatism of mostly Carboniferous
(w312e306 Ma) age. Along its central and southern seg-
ments, the shear zone cuts across Early Cretaceous plutons
and gently dipping extensional shear zones. New U/Pb zircon
analyses indicate that Cretaceous magmatism had ended by
113.4� 1.7 Ma and extension had ceased by 88.4� 1.2 Ma.
Zircon analyses show similarities in protolith age and igne-
ous and metamorphic histories across the shear zone, indicat-
ing that it is not a major terrane boundary associated with the
large-scale (>20 km) dispersal of rock units along the
margin.

The age and style of transpression in the shear zone invite
comparisons with offshore segments of the Alpine fault sys-
tem. Within the limits of available ages, the similarities among
these structures suggest that transpression could have occurred
during the late Tertiary, indicating that a significant amount of
shortening at high angles to the Alpine fault may be accommo-
dated within Fiordland.
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